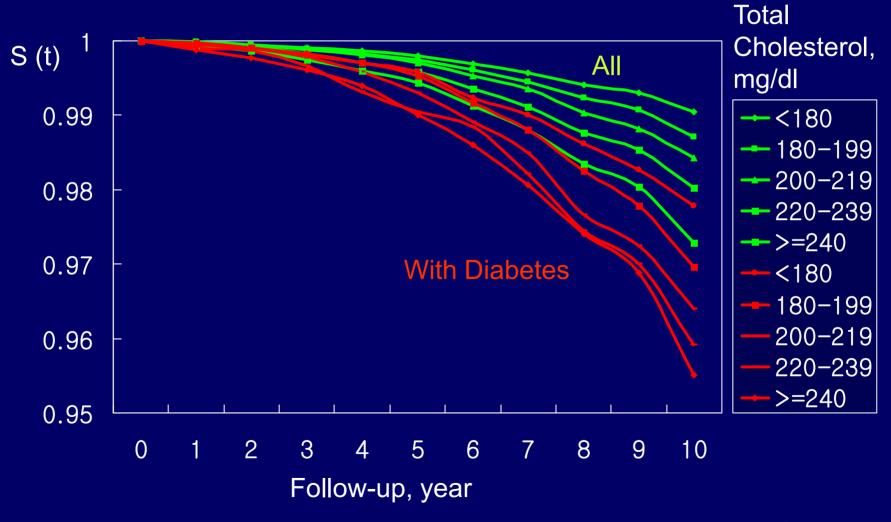
The ideal management of diabetic dyslipidemia

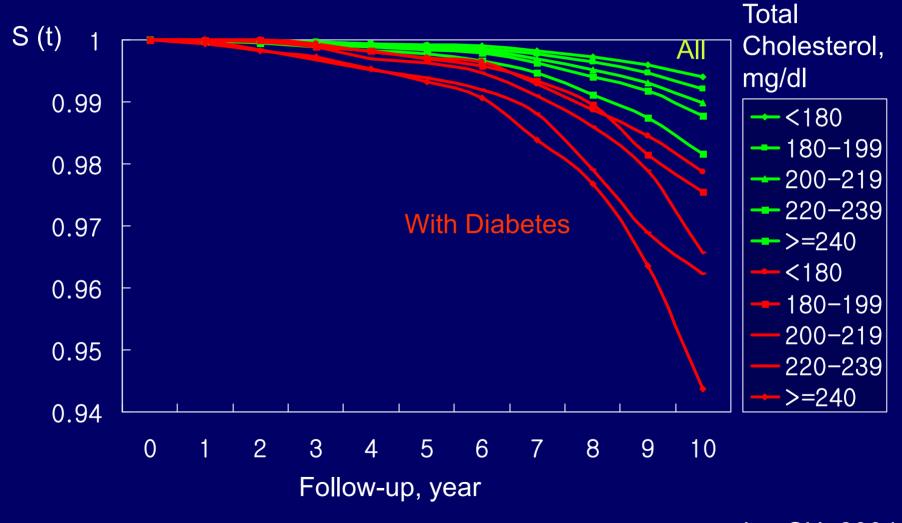
Ki Hoon Han Asan Medical Center MD PhD

Asia-Pacific is in jeopardy


Ageing Cardio- and Cerebrovascular diseases Diabetes and Metabolic syndrome

Type 2 Diabetes prevalence is projected to reach 150 Million by 2025 in Asia

- About 33 million adults diagnosed with diabetes in China and OAI* in 2000
 17 million women and 16 million men
- Between 1995 and 2025, the prevalence of diabetes in adults will increase by 68% in China and 41% in OAI and the number of people with diabetes will increase by 134% in China and over 150% in OAI



Survival Curve of IHD in Korean Men

Jee SH, 2004

Survival Curve of IHD in Korean Women

Jee SH, 2004

The comparison of metabolic syndrome and major risk factors described in NCEP-III

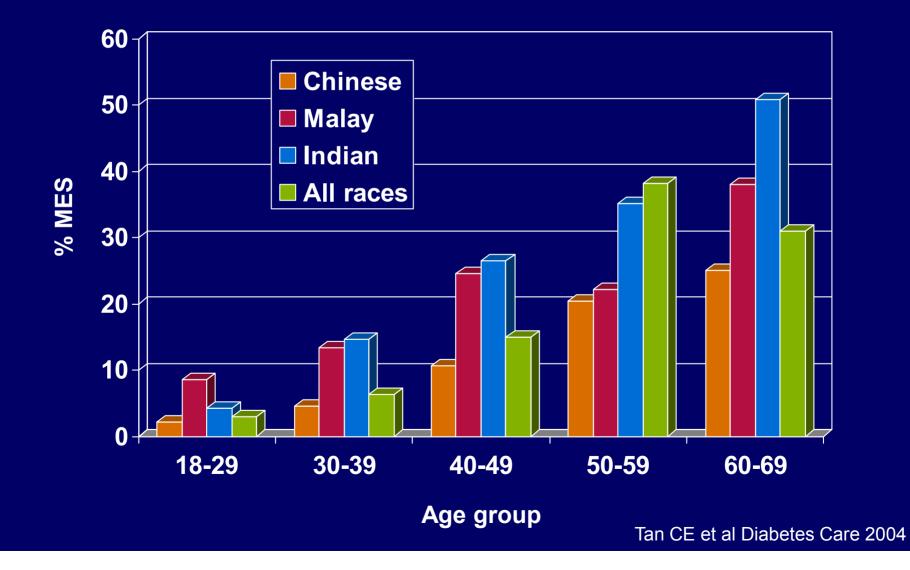
	IDF criteria of th metabolic synd		NCEPIII criteria of the <u>Risk factors</u>		
•	High waist circumf	erence			
	Plus any two of				
•	↑ Triglycerides	≥ 150 [‡]	NA	(mg/dl)	
•	HDL cholesterol				
	– Men	< 40 ‡	< 40	(mg/dl)	
	– Women	< 50 ‡			
•	↑ Blood pressure	≥ 130/85 ‡	≥ 140/90 ‡	(mmHg)	
•	↑ FPG	≥ 100 [‡]	Diabetes	(mg/dl)	

^{‡;} specific treatment for these conditions International Diabetes Federation (2005)

Prevalence of Metabolic Syndrome in Korea

ATP-III

- **1998 ; 16.0 %** – male :14.2%, female : 17.7%
- **2000 ; 19.90 %** – male : 17.3%, female : 22.1%
- 2004 ; 19.48 %
 - male : 18.6%, female : 20.1%


IDF definition

- (defined by central obesity (waist circumference 90 cm for men and 85 cm for women)
- 1998;

male : 13.5 % female : 15.0 %

Diabetes Care 29:933-934, 2006

Metabolic Syndrome (Asian guideline) in Singapore (Relationship with Age)

Diabetes set to double as nation piles on kilos

South China Morning Post 2nd June 2001

Prevalence of Metabolic Syndrome in Korean Teen Age Group (12-19 years)

- 1998 (n=1317) ; 6.8 % (boys; 6.6 % girls; 6.9 %)
- 2001 (n=848) ; 9.2 % (boys; 12.5 %, girls; 5.8%)

Diagnostic criteria by Cook et al.

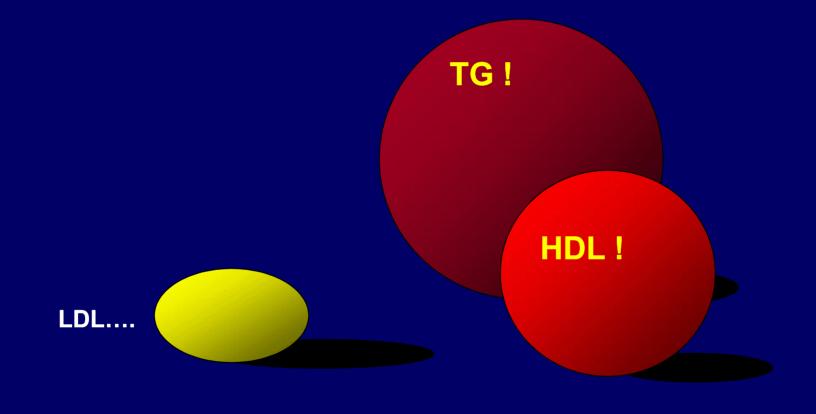
Subjects who had at least three of the following five risk factors

- (1) abdominal obesity (waist circumstances \geq 90th percentile)
- (2) elevated blood pressure (\geq 90th percentile)
- (3) high triglyceride \geq 1.24 mmol/L (110 mg/dL),
- (4) low HDLc \leq 1.03 mmol/L (40 mg/dL)
- (5) high fasting glucose \geq 6.1 mmol/L (110 mg/dL).

Diabetes Research and Clinical Practice, Volume 75, Issue 1, Pages 111 - 114

Korean National Health and Nutrition Examination Survey 1998 and 2001

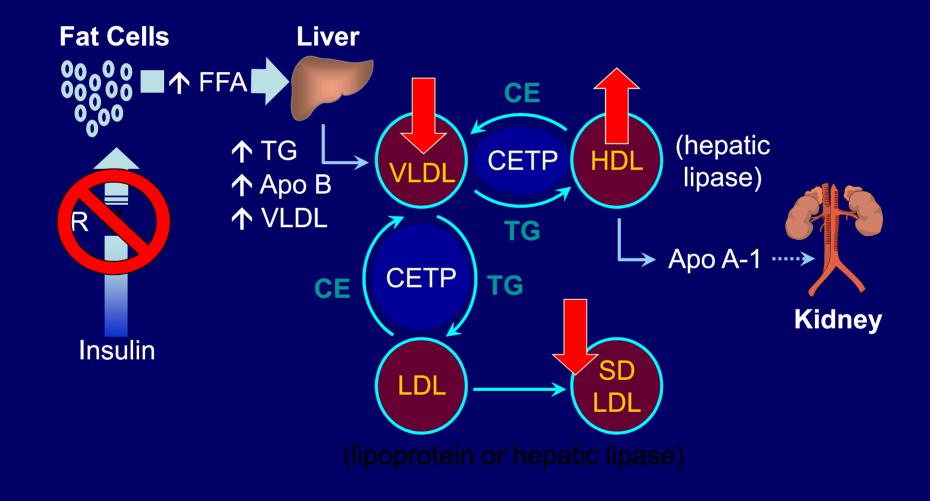
Dyslipidemia in Diabetics



Dyslipidemia in Diabetes Framingham Heart Study

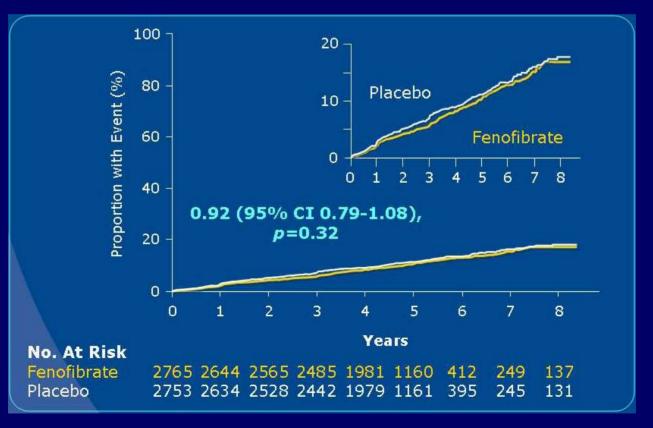
	ME	N	WOM	EN
	Normal	DM	Normal	DM
Increased cholesterol	14%	13%	21%	24%
Increased LDLc	11%	9%	16%	15%
Decreased HDLc	12%	21%	10%	25%
Increased triglycerides	9%	19%	8%	17%

Garg A et al. *Diabetes Care* 1990;13:153-169.


Is LDL <u>nothing</u> in Diabetic conditions ? Are TG and HDL <u>more important</u> ?

Diabetic Dyslipidemia (High TG and Low HDLc)

Fibrates activate PPARa and may reverse insulin resistance


	Without Statins
The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Trial	Lecentade Change 10 2.1% 2.1% Percentage Change Lecentage Change -10 -13.1% -14.7% -27.3% TC LDL-C HDL-C TG
Fenofibrate Treatment Effect	Relative Risk P Reduction (95% CI)
CHD Events	
Unadjusted	11% (-5 to 25) 0.16
Adjusted for statin use*	19% (4 to 32) 0.01
Total CVD Events	
Unadjusted	11% (1 to 20) 0.035
Adjusted for statin use*	15% (5 to 24) 0.004
* Non-randomised comparison ad	justing for on-study statin use

Baseline Characteristics of FIELD study

	Total Population (n = 9,795)
Male/Female, %	62.7/37.3
No Prior CVD, %	78.3
Diabetes management with	
diet plus one oral hypoglycemic agent %	59.5
Median duration of diabetes, years	5
Median HbA1c, %	6.9
Diabetic complications	
Retinopathy, %	8.3
Nephropathy, %	2.8
Lipid parameters, mg/dl	
TC (mean)	194
LDL-C (mean)	119
HDL-C (mean)	42
TG (median)	153
Dyslipidemic*, %	37

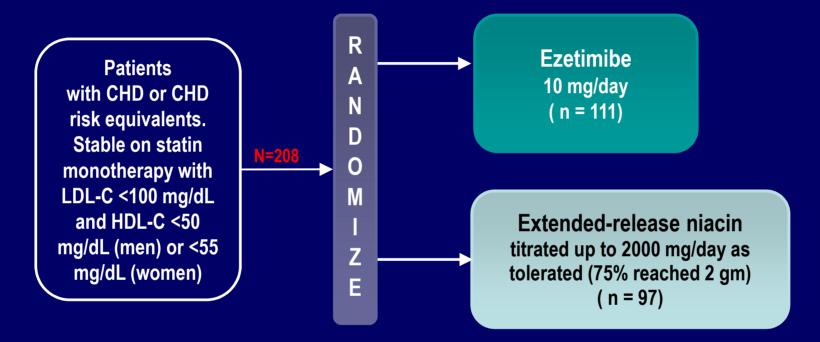
*TG > 150 mg/dL and HDL < 40 mg/dL for men or < 50 mg/dL for women

	Lipid levels at study close	Simvastatin + Fenofibrate (n=2,765)	Simvastatin (n=2,753)	p value
ACCORD Lipid				
The Action to Control Cardiovascular Risk in Diabetes Lipid Trial	Mean LDL-C (mg/dL)	81.1	80.0	p=0.16
	Mean HDL-C (mg/dL)	41.2	40.5	p=0.01
ACCORD Lipd was sponsored by the NIH. The fencifizate used for study was provided by Atbott Laboratories.	Median triglycerides (mg/dL)	147.0	170.0	p=0.001

Baseline demographics	Simvastatin + Fenofibrate (n=2,765)	Simvastatin (n=2,753)	Overall (n=5,518)
Mean age – yr	62.2	62.3	62.3
Women – n (%)	851 (30.8)	843 (30.6)	1694 (30.7)
Race/ethnicity – n (%)			
White	1909 (69.0)	1865 (67.7)	3774 (68.4)
Black	392 (14.2)	442 (16.1)	834 (15.1)
Hispanic	213 (7.7)	194 (7.0)	407 (7.4)
Cigarette-smoking status – n (%)			
Current	410 (14.8)	393 (14.3)	803 (14.6)
Former	1292 (46.7)	1254 (45.6)	2546 (46.2)
Previous CVD – %	36.5	36.6	36.5
Median duration of diabetes – yrs	10	9	9
Mean HbA1c – %	8.3	8.3	8.3
Mean fasting serum glucose – mg/dL	176.5	175.1	175.8
Mean SBP – mmHg	133.8	134.0	133.9
Mean DBP – mmHg	73.9	74.0	74.0
Mean BMI– kg/m²	32.2	32.4	32.3
Mean total cholesterol	174.7	175.7	175.2
Mean LDL-C	100.0	101.1	100.6
Mean HDL-C	38.0	38.2	38.1
Median TG	164	160	162

Primary endpoint in pre-specified subgroups in ACCORD

Subgroup	Simvastatin + Fenofibrate	Simvastatin	Hazard ratio (95% CI)	p value for interaction
	% of events (no. in group)		
Overall	10.52 (2,765)	11.26 (2,753)		
Sex				
Female	9.05 (851)	6.64 (843)		
Male	11.18 (1,914)	13.30 (1,920)	<u>+</u>	0.01
Age				
<65 yr	8.11 (1,838)	9.50 (1,822)		
≥65 yr	15.32 (927)	14.72 (931)		0.25
Race				
Non-white	9.70 (856)	8.22 (888)		
White	10.90 (1,909)	12.71 (1,865)	<mark>_</mark> _	0.09
Previous CVD				
No	7.29 (1,757)	7.34 (1,745)		
Yes	16.17 (1,008)	18.06 (1,008)		0.45
Glycaemia group				
Standard therapy	10.14 (1,391)	11.61 (1,370)	_	
Intensive therapy	10.92 (1,374)	10.92 (1,383)		0.36
		г		
		0		
		Simvastatin + F	enofibrate better Simvastatin better	


ACCORD Study Group. N Engl J Med March 14, 2010. Epub.

Primary endpoint in pre-specified subgroups in ACCORD

Subgroup	Simvastatin + Fenofibrate	Simvastatin	Hazard ratio (95% CI)	p value for interaction
	% of events	(no. in group)		
Overall	10.52 (2,765)	11.26 (2,753)		
LDL cholesterol				
≤ 84 mg/dL	9.38 (938)	12.23 (891)		
85-111 mg/dL	9.85 (934)	11.17 (922)		
≥112 mg/dL	12.43 (877)	10.57 (927)		0.12
HDL cholesterol				
≤34 mg/dL	12.24 (964)	15.56 (906)		
35-40 mg/dL	10.12 (860)	9.47 (866)		
≥41 mg/dL	9.08 (925)	8.99 (968)		0.24
Triglycerides				
≤128 mg/dL	9.88 (891)	11.29 (939)		
129-203 mg/dL	10.50 (924)	9.86 (913)		
≥204 mg/dL	11.13 (934)	12.84 (888)		0.64
Triglyceride-HDL cholesterol combination				
Triglyceride ≥204 mg/dL and HDL				
≤34 mg/dL	12.37 (485)	17.32 (456)		
All others	10.11 (2264)	10.11 (2284)		0.06
Glycated hemoglobin				
≤8.0%	8.69 (1,324)	10.56 (1,335)		
≥8.1%	12.20 (1,435)	11.94 (1,415)		0.20
		٦ 0		
		Simuactatin I E		

Simvastatin + Fenofibrate better Simvastatin better

ARBITER 6-HALTS -- Trial Design

- Primary end point: change in the mean common carotid IMT between treatment groups
- Secondary end points change in lipid values
 - composite of major adverse cardiovascular events
- Duration: 14 months

CHD = clinical atherosclerotic coronary or vascular disease.

CHD risk equivalent = (diabetes mellitus, multiple coronary risk factors with a Framingham Risk Score >2% per year, an elevated coronary calcium score (>400 for men; >200 for women). For internal use only. Not to be used with Health Care Professionals Devine et al. *Cardiovasc Drugs Ther.* 2007;21:221.

ARBITER-6: Results – lipid parameters

	Base	eline	2 Mo	nths	8 Mo	nths	14 Mo	onths
	Ezetimibe	Niacin	Ezetimibe	Niacin	Ezetimibe	Niacin	Ezetimibe	Niacin
Total Cholesterol	146.6 ± 23.3	143.6 ± 24.0	120.2 ± 20.6	131.0 ± 22.9	122.4 ± 21.5	133.6 ± 25.5	127.8 ± 22.8	136.7 ± 29.3
P value	0.9	90	0.0	01	<0.	001	0.0	25
HDL-C	43.3 ± 8.5	42.5 ± 8.6	42.2 ± 8.5	48.9 ± 10.6	41.1 ± 9.0	50.7 ± 11.6	40.5 ± 7.9	49.9 ± 12.2
P value	0.	59	<0.0	001	<0.	001	<0.0	001
LDL-C	83.7 ± 19.9	80.5 ± 17.2	60.1 ± 16.1	66.2 ± 18.1	61.6 ± 17.2	67.1 ± 19.5	66.1 ± 18.8	70.5 ± 23.9
P value	0.3	34	0.0	13	0.0	13	0.1	12
Triglycerides	122 (87-162)	126 (94-163)	100 (78-140)	88 (69-125)	107 (78-153)	88 (66-123)	113 (84-150)	90 (69-138)
P value	0.	56	0.0	33	0.0	19	0.0	18
Glucose	104.0 ± 27.8	104.1 ± 18.9	109.6 ± 39.5	109.1 ± 23.9	108.2 ± 27.7	107.6 ± 28.1	110.4 ± 33.4	107.4 ± 24.9
P value	0.3	20	0.9	51	0.:	53	0.3	34
C-reactive protein	1.9 (0.8-3.6)	1.3 (0.8-4.0)	1.2 (0.6-3.0)	1.1 (0.6-3.1)	1.3 (0.6-2.9)	1.1 (0.5-2.4)	0.6 (0.6-3.1)	1.0 (0.4-2.9)
P value	0.	51	0.0	93	0.0	67	0.4	42

% change	LDL –C	HDL-C	TG
Niacin	- 12	+ 17	- 29
Ezetimibe	- 21	- 6	- 7

Tayler et al. N Engl J Med 2009;361

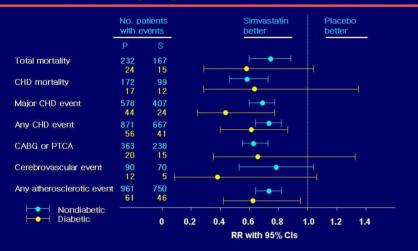
ARBITER-6: cIMT endpoint result

	Ezetimibe (N=111)	Niacin (N=97)	P Value
Baseline			
Mean thickness (mm)	C.8957=0.1484	0.9001±0.1558	0.83
Maximal thickness (mm)	1.0065=0.1548	1.0092±0.1650	0.90
Change from baseline to 8 mo			
Mean thickness (mm)	0.0014=0.0020	-0.0102±0.0030	0.001
P value for change from baseline	0.48	0.001	
Maximal thickness (mm)	-C.0028=0.0031	-0.0128±0.0043	0.057
P value for change from baseline	0.38	0.004	
Change from baseline to 14 mo			
Mean thickness (mm)	0.0007_0.0035	0.0142±0.0041	0.01
P value for change from baseline	0.84	0.001	
Maximal thickness (mm)	-C.0009±0.0039	-0.0181±0.0050	0.006
P value for change from baseline	0.81	<0.001	

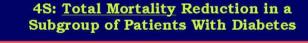
Tayler et al. N Engl J Med 2009;361

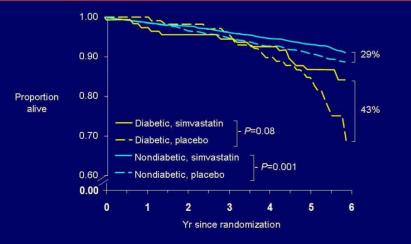
- Are TG and HDL important in diabetic condition ? YES, especially when LDL is promptly controlled
- Is LDL less important in diabetic conditions ?

What is important risk for CVD in diabetic condition ? (UKPDS: 23)

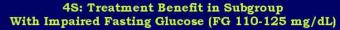

Position	Coronary arte (n=28		Fatal or non-fatal myocardial infarction (n=192)		
in model	Variable	p-value	Variable	p-value	
1.	LDL chol	<0.001	LDL chol	0.0022	
2.	HDL chol	0.001	Diastolic BP	0.0074	
3.	HbA _{1c}	0.002	Smoking	0.025	
4.	Systolic BP	0.0065	HDL chol	0.026	
5.	Smoking	0.056	HbA _{1c}	0.053	

2,693 white patients with type 2 diabetes mellitus

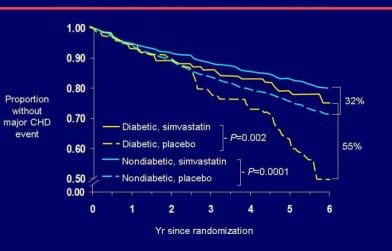

*Stepwise multivariate Cox models


Turner RC et al. BMJ 1998;316:823-8

Secondary Prevention: CHD Risk Reduction in the 4S Subgroup of Patients With Diabetes



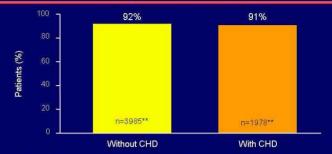
Pyörälä K et al. Diabetes Care. 1997;20:614-620.


Pyörälä K et al. Diabetes Care. 1997;20:614-620.

Haffner SM et al. Diabetes. 1998;(suppl 1):A54. Abstract.

4S: <u>Major CHD Event</u> Reduction in a Subgroup of Patients With Diabetes

Pyörälä K et al. Diabetes Care. 1997;20:614-620.

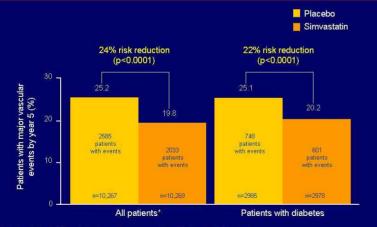

HPS

Heart Protection Study Diabetes Sub-Study

Impact of Simvastatin on LDL-C Nine Out of 10 Patients with Diabetes Achieved Goal (LDLc <115mg/dl) *

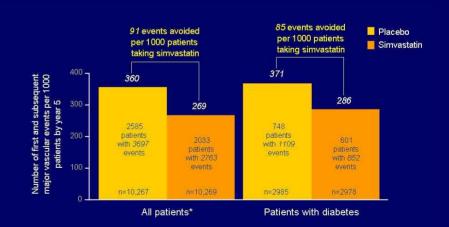
- Almost 6000 men and women, aged 40-80 years with diabetes mellitus
 - 1981 persons with history of CHD
 - 3982 persons with no history of CHD
- · People randomized to simvastatin 40 mg or placebo
- Mean duration of follow-up 5 years
- Objective—to evaluate the long-term benefits of simvastatin and/or antioxidants in people with diabetes with or without CHD regardless of cholesterol level
- Primary endpoints—first major coronary events* and first major vascular events**
- Statin not considered clearly indicated or contraindicated by patients' primary
 physicians

Wonfatal MI or death from coronary disease
 "Major coronary events, schole of any type, and coronary or noncoronary revascularizations
 Adapted from Heart Protection Study Collaborative Group *Eur Heart J* 1999;20:725-741, Heart Protection Study
 Collaborative Group *Lance*(2003;361:2005;2016
 Collaborative Group *Lance*(2003;361:2005;2016



 Results from the five-year Heart Protection Study (HPS) of almost 6000 patients with diabetes with or without CHD indicated that 92% of patients with diabetes, but without CHD, and 91% of patients with CHD who received simvastatin 40 mg achieved the European Guidelines LDL -C treatment goal of <3 mmol/L (115 mg/dl)^{***}

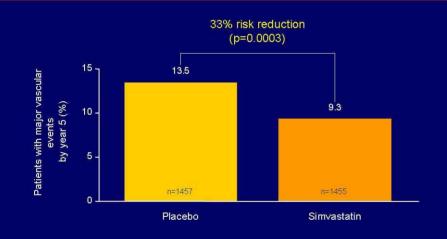
*By the four-month point in HPS


**These populations differ from those reported in later HPS publications (3982 and 1981) because three patients were reclassified after the four-month point. The percentages of patients achieving LDL-C goal are not affected. **Based on random sampling of patients with diabetes Adapted from Armitage J, Collins R Heart 2000,84:357-360.

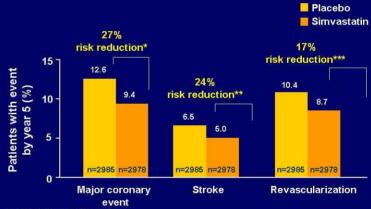
First Major Vascular Events All Patients vs. Patients with Diabetes

*Includes patients with CHD, occlusive disease of noncoronary arteries, diabetes, or treated hypertension Adapted from Heart Protection Study Collaborative Group *Larcet* 2002;360:7-22; Heart Protection Study Collaborative Group *Larcet* 2003;361:2005-2016.

First and Subsequent Major Vascular Events All Patients vs. Patients with Diabetes



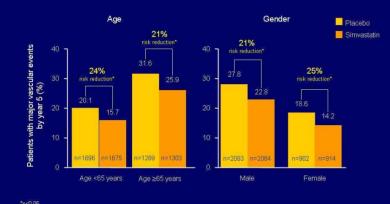
*Includes patients with CHD, occlusive disease of noncoronary arteries, diabetes, or treated hypertension Adapted from Heart Protection Study Collaborative Group Lancet 2003;361:2005-2016.



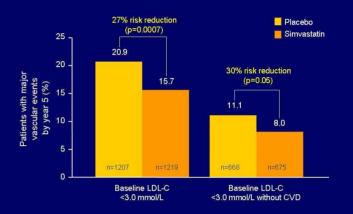
Impact of Simvastatin in Patients with Diabetes and No Prior CVD Major Vascular Events

Impact of Simvastatin in Patients with Diabetes Major Coronary Events, Stroke, and Revascularization

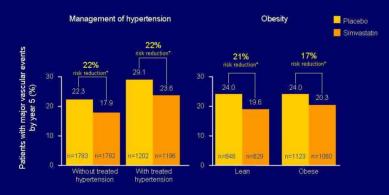
Adapted from Heart Protection Study Collaborative Group Lancet 2003;361:2005-2016.

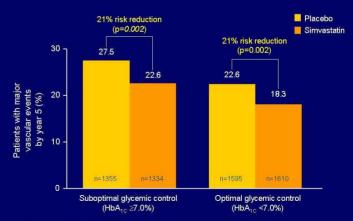


*p<0.0001; **p<0.01; ***p=0.02


Adapted from Heart Protection Study Collaborative Group Lancet 2003;361:2005-2016.

Impact of Simvastatin in Patients with Diabetes By Age and Gender


Impact of Simvastatin in Patients with Diabetes
With Low LDL-C


Adapted from Heart Protection Study Collaborative Group Lancet 2003:361:2005-2016.

Impact of Simvastatin in Patients with Diabetes with or without Treated Hypertension or Obesity

Adapted from Heart Protection Study Collaborative Group Lancet 2003;361:2005-2016.

Impact of Simvastatin in Patients with Diabetes With or without Optimal Glycemic Control

Adapted from Heart Protection Study Collaborative Group Lancet 2003;361:2005-2016.

*P40.05 Adapted from Heart Protection Study Collaborative Group Lancet 2003;361:2005-2016.

- Are TG and HDL important in diabetic condition ? YES, especially when LDL is promptly controlled
- Is LDL less important in diabetic conditions ? NO. Lowering LDLc with (simva)statin can reduce CVD incidence and save lives.
- Is LDLc a good marker to reflect LDL-burden under (pre)diabetic conditions ?

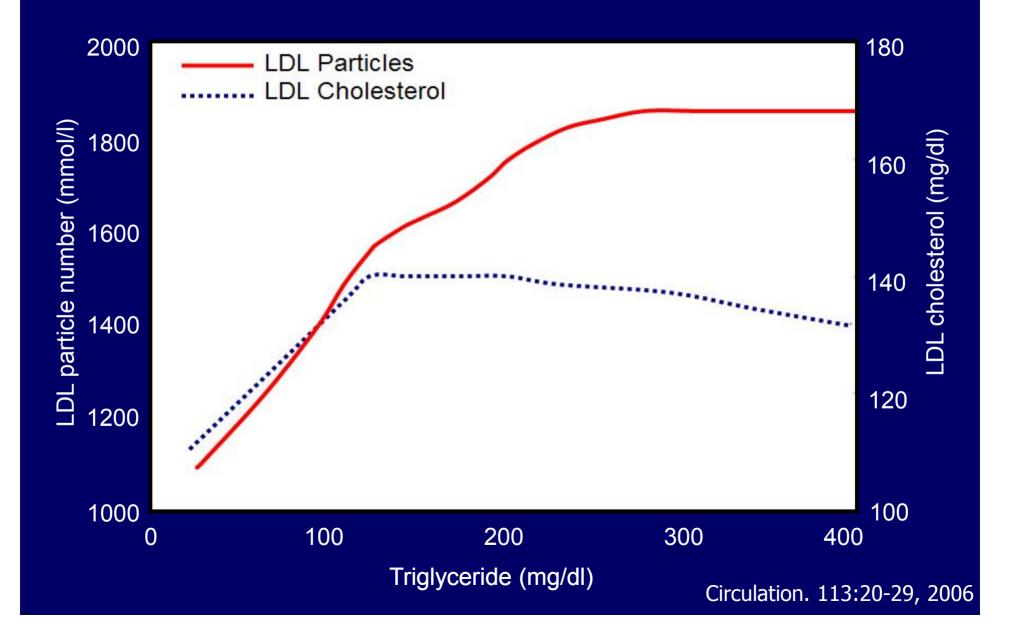
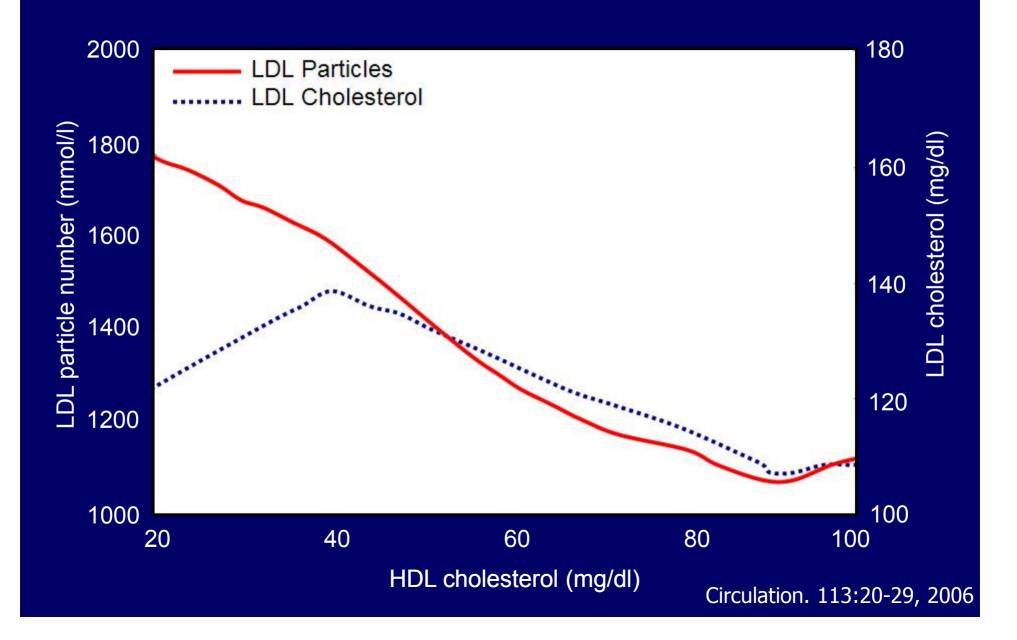
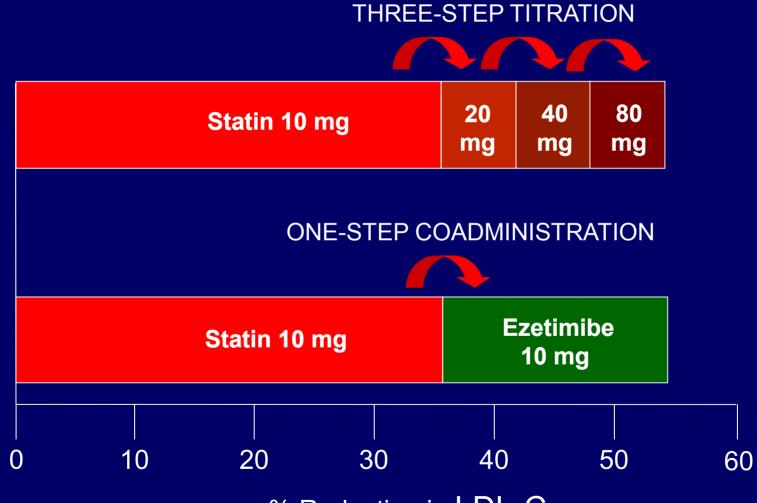

Lipoproteins vs. Severity of Metabolic Syndrome A Prominent Feature of the Metabolic Syndrome in the Framingham Heart Study

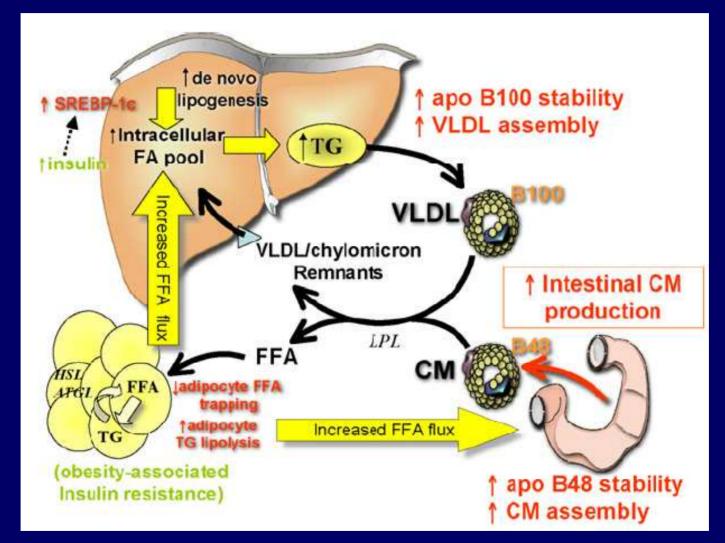
TABLE 4. Plasma Levels of NMR-Determined Lipoprotein Measures and Biochemical Lipid Measures With Increasing Number of MetSyn Features*


	No. of Components of MetSyn						
	0	1	2	3	4	5	P for Trend
Women	n=562	n=464	n=298	n=134	n=102	n=29	
NMR-derived lipoprotein measures							
Total LDL particle No., nmol/L	1169 ±16	1344=17	1496±22	1600 ± 32	1678±37	1663 ± 69	<0.0001
Small LDL particles, nmol/L	428±15	591 ± 16	756±20	918±30	1090±34	1187±64	<0.0001
Large LDL particles, nmol/L	714±12	716±13	$697{\pm}17$	618 ± 25	529 ± 28	41 9±53	< 0.0001
Biochemical lipid measures							
LDL-C, mg/dL	117 ±1	128=2	135±2	137±3	138±3	133±6	<0.0001
ApoB, mg/dL	84±1	92±1	101±1	110±2	1 11 ±2	113±4	<0.0001
Triglycerides, mg/dL	71±2	84±2	121±2	154 ± 4	188±4	211 ± 8	<0.0001
HDL-C, mg/dL	66±1	57±1	51 ± 1	45±1	40±1	36±2	< 0.0001
Men	n=286	n=407	n=335	n=233	n=113	n=30	
NMR-derived lipoprotein measures							
Total LDL particle No., nmol/L	1290=23	1485=19	1554±21	1690 ± 25	1783±36	1767 ± 69	<0.0001
Small LDL particles, nmol/L	574±26	813±21	991±24	1232±29	1396±41	1361±79	<0.0001
Large LDL particles, nmol/L	684±17	630±14	520 ± 16	411±19	336±27	362 ± 52	< 0.0001
Biochemical lipid measures							
LDL-C, mg/dL	127=2	137=2	135±2	137±2	135±3	136±6	0.01
ApoB, mg/dL	90 ±1	99±1	103±1	111±1	115±2	115±4	<0.0001
Triglycerides, mg/dL	71±3	96±3	133±3	178±4	214 ±5	$231\!\pm\!10$	<0.0001
HDL-C, mg/dL	52±1	48±1	43±1	37±1	33±1	32±2	<0.0001

Circulation. 113:20-29, 2006


Relations of total LDL particle number and LDL cholesterol value to the Triglyceride level

Relations of total LDL particle number and LDL cholesterol value to the HDL cholesterol level

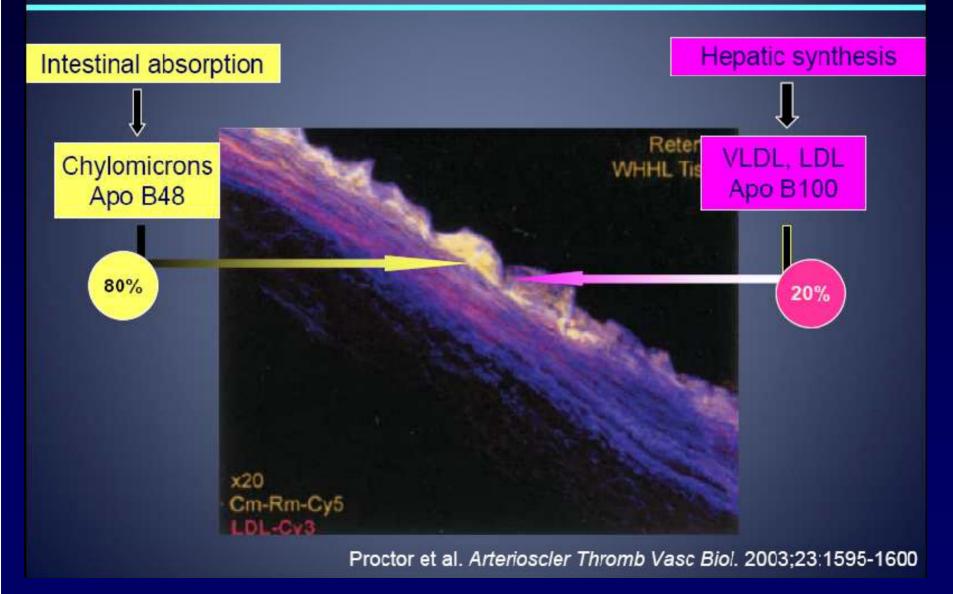

One more way for LDLc reduction with ezetimibe

% Reduction in LDL-C

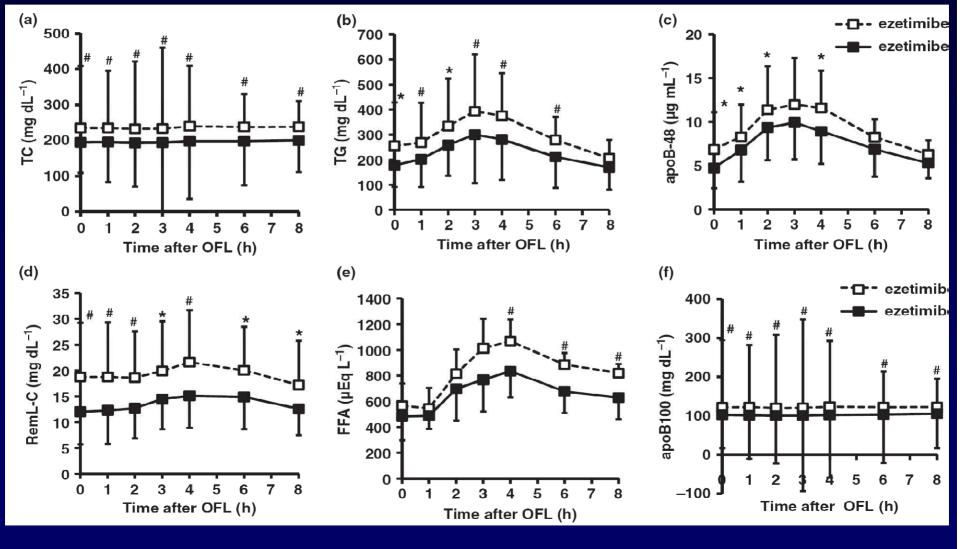

- Are TG and HDL important in diabetic condition ? YES, especially when LDL is promptly controlled
- Is LDL <u>less</u> important in diabetic conditions ? NO.
 On the contrary, lowering LDLc with (simva)statin can reduce CVD incidence and save lives.
- Is LDLc a good marker to reflect LDL-burden under (pre)diabetic conditions ? Measured LDL cholesterol becomes less liable when TG and HDL cholesterol level are abnormal.

Diabetic condition increases intestinal chylomicron production

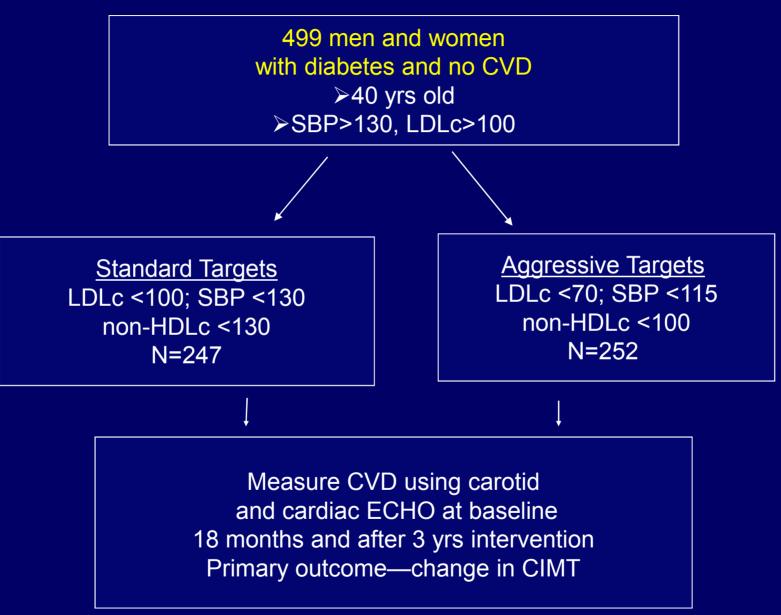
Duez H. et al. Atherosclerosis Supple. 2008;9:33-38


Increased Chylomicron (ApoB48) Synthesis in DM

T2DM: increased MTTP and NPC1L1 mRNA decreased ABCG5/8 mRNA (MTTP: 8.76 vs 4.87, p<0.02, NPC1L1: 2.47 vs 1.39, p<0.02, ABCG5/8: 0.12 vs 0.17, p<0.04)


Lally. Diabetologia. 2006; 49;1008-1016

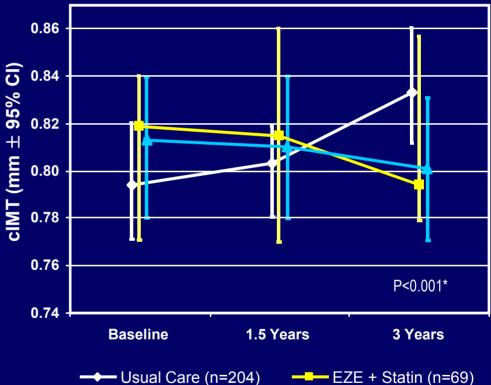
Cholesterol in Plaque from 2 sources


Ezetimibe improves postprandial hyperlipidemia

Oral fat loading (OFL) test before and after administration of ezetimibe.

*P < 0.05, #P < 0.01.

SANDS Trial Design


SANDS (Stop Atherosclerosis in Native Diabetics Study) Trial

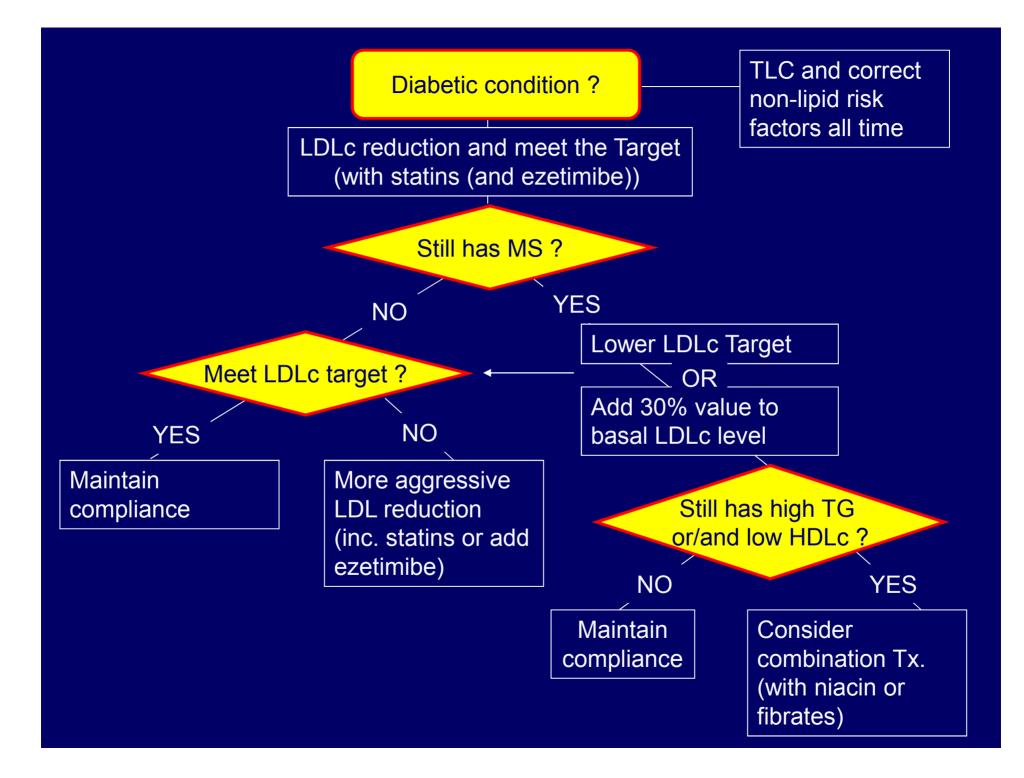
- Study population:
- Native Americans (>40 years of age) with type 2 diabetes (N=499)
- Lipid lowering therapy at enrollment:
 - 37% 44% on statins
 - 4% 7% on fibrates
 - 0 2% on niacin
 - 0 2% on fish oil

Tx arm	Baseline LDL-C (mg/dL)	Endpoint LDL-C (mg/dL)	Change (%)
Usual care	102	103	+ 0.9
Aggressive Tx			
Statin only	101	68	- 32
EZE + statin	108	78	- 31

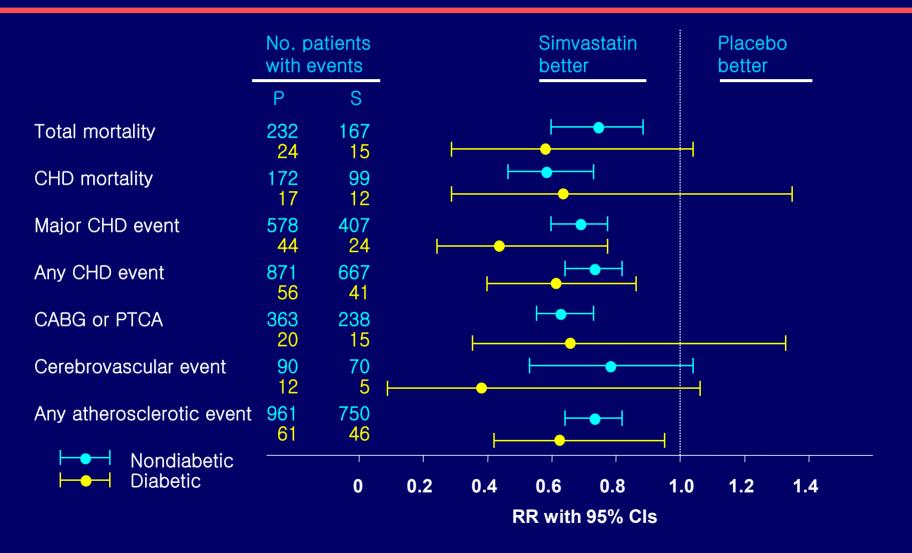
- 0.80 UMU UMU 0.78 0.76 0.74 Baseline
- Treatment duration: 3 years
- Primary endpoint: mean change in cIMT

*P-value for change in cIMT for both active treatment arms vs usual care group Fleg JL et al. J Am Coll Cardiol. 2008;52:2198.

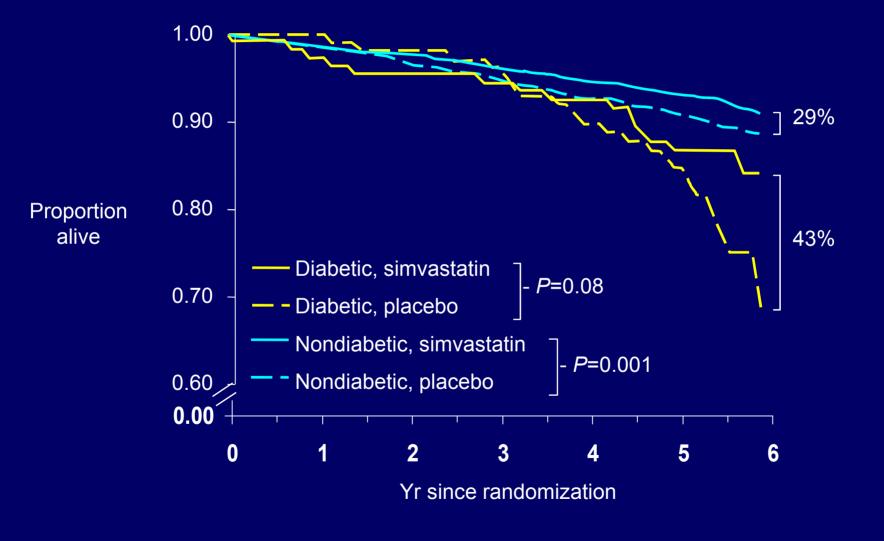
Mean cIMT


Potential benefits of ezetimibe on statin

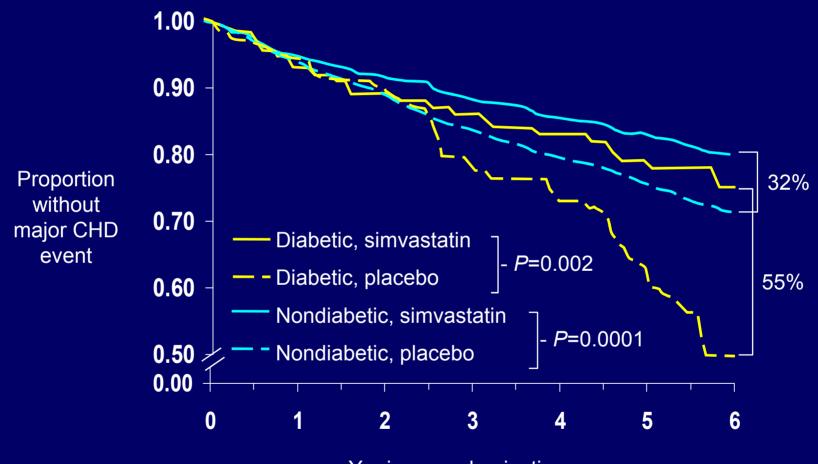
- Dual inhibition ; inhibition of cholesterol absorption from terminal illeum
- Avoidance of statin tolerance
- Inhibition of chylomicron formation in terminal illeum
- Lower the postprandial hyperTGemia.


Who will be the prince for 'princess statin' ?

Sta

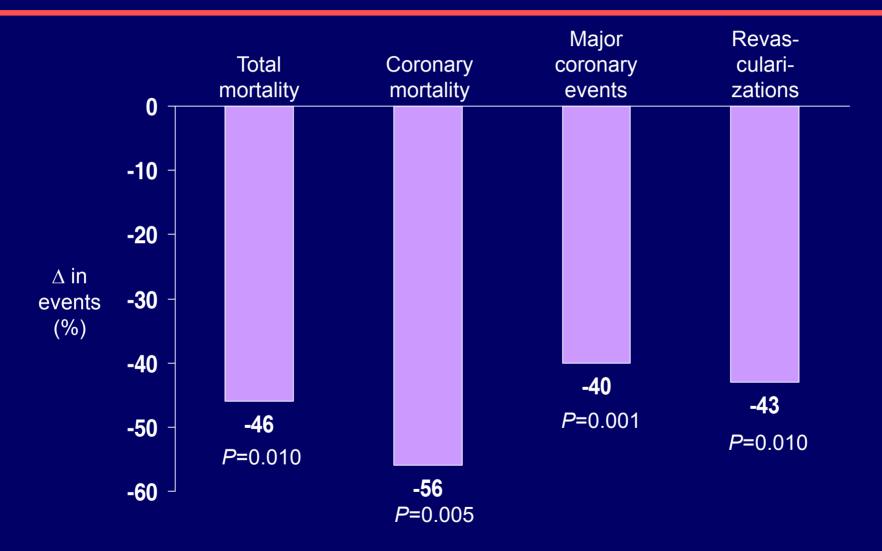


Secondary Prevention: CHD Risk Reduction in the 4S Subgroup of Patients With Diabetes

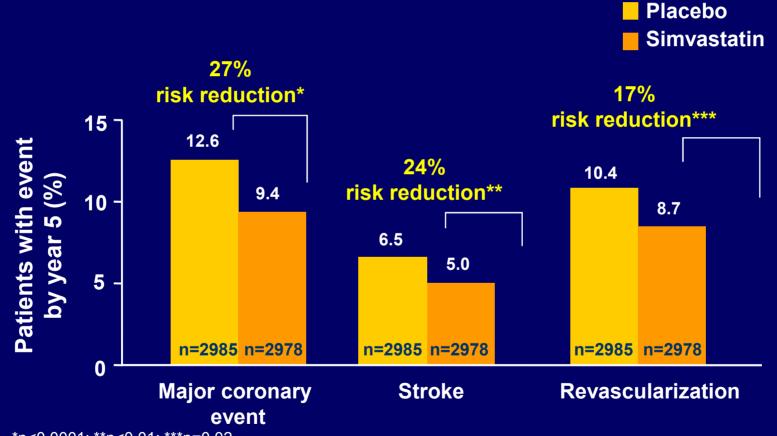

Pyörälä K et al. Diabetes Care. 1997;20:614-620.

4S: <u>Total Mortality</u> Reduction in a Subgroup of Patients With Diabetes

Pyörälä K et al. *Diabetes Care*. 1997;20:614-620.

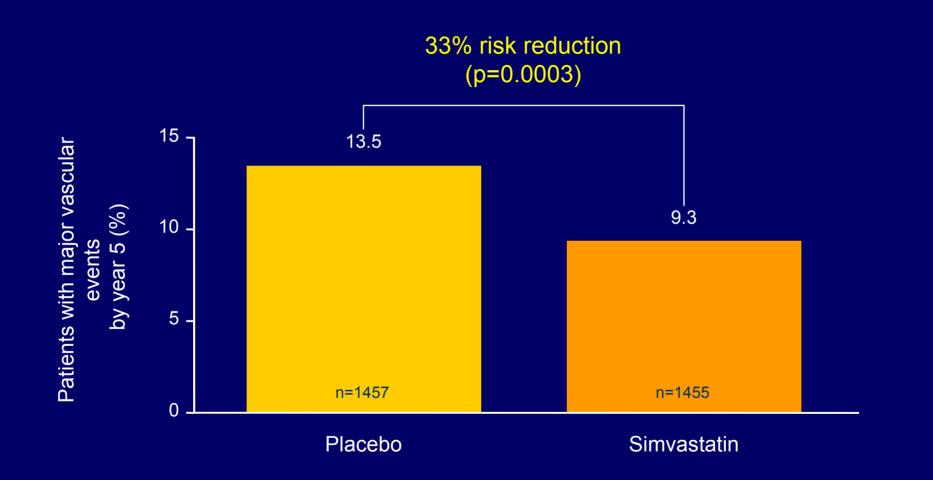

4S: <u>Major CHD Event</u> Reduction in a Subgroup of Patients With Diabetes

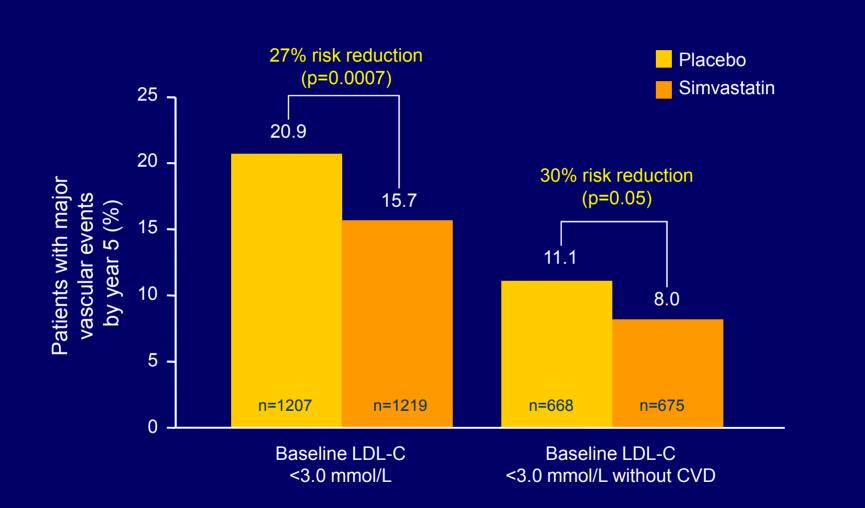
Yr since randomization


Pyörälä K et al. Diabetes Care. 1997;20:614-620.

4S: Treatment Benefit in Subgroup With Impaired Fasting Glucose (FG 110-125 mg/dL)

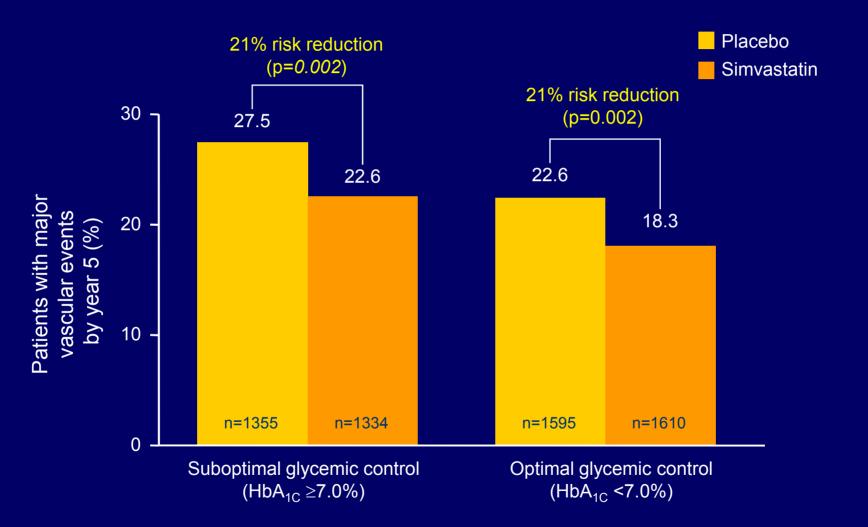
Haffner SM et al. *Diabetes*. 1998;(suppl 1):A54. Abstract.


Impact of Simvastatin in Patients with Diabetes Major Coronary Events, Stroke, and Revascularization

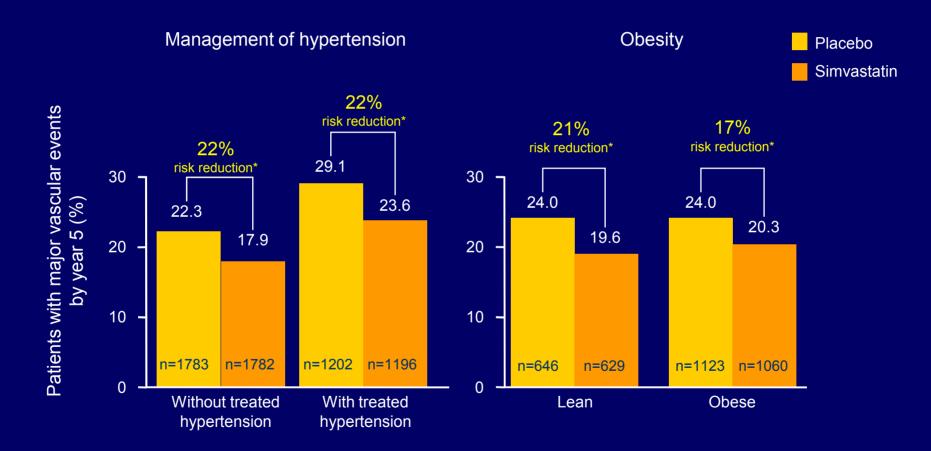

^{*}p<0.0001; **p<0.01; ***p=0.02

Adapted from Heart Protection Study Collaborative Group Lancet 2003;361:2005-2016.

Impact of Simvastatin in Patients with Diabetes and No Prior CVD Major Vascular Events

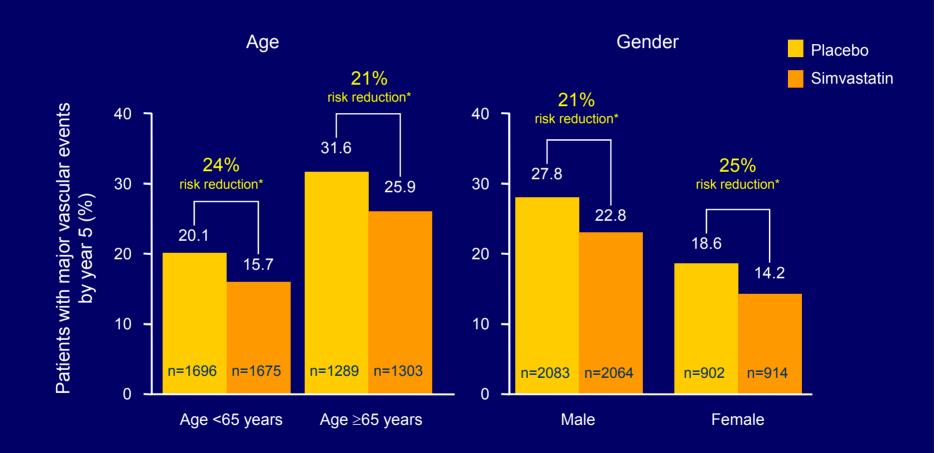


Impact of Simvastatin in Patients with Diabetes With Low LDL-C


Adapted from Heart Protection Study Collaborative Group Lancet 2003;361:2005-2016.

Impact of Simvastatin in Patients with Diabetes With or without Optimal Glycemic Control

Adapted from Heart Protection Study Collaborative Group Lancet 2003;361:2005-2016.


Impact of Simvastatin in Patients with Diabetes with or without Treated Hypertension or Obesity

*p<0.05

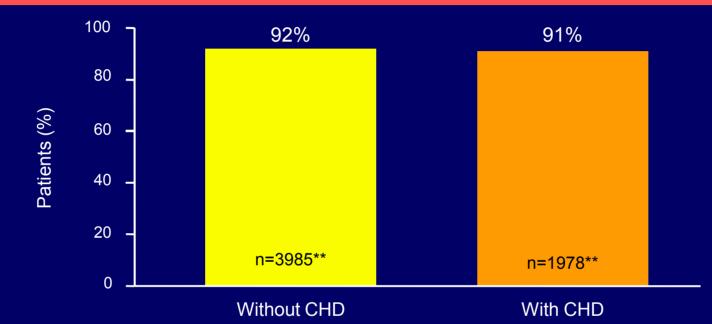
Adapted from Heart Protection Study Collaborative Group Lancet 2003;361:2005-2016.

Impact of Simvastatin in Patients with Diabetes By Age and Gender

*p<0.05

Adapted from Heart Protection Study Collaborative Group Lancet 2003;361:2005-2016.

Heart Protection Study Diabetes Sub-Study


- Almost 6000 men and women, aged 40–80 years with diabetes mellitus
 - 1981 persons with history of CHD
 - 3982 persons with no history of CHD
- People randomized to simvastatin 40 mg or placebo
- Mean duration of follow-up 5 years
- Objective—to evaluate the long-term benefits of simvastatin and/or antioxidants in people with diabetes with or without CHD regardless of cholesterol level
- Primary endpoints—first major coronary events* and first major vascular events**
- Statin not considered clearly indicated or contraindicated by patients' primary physicians

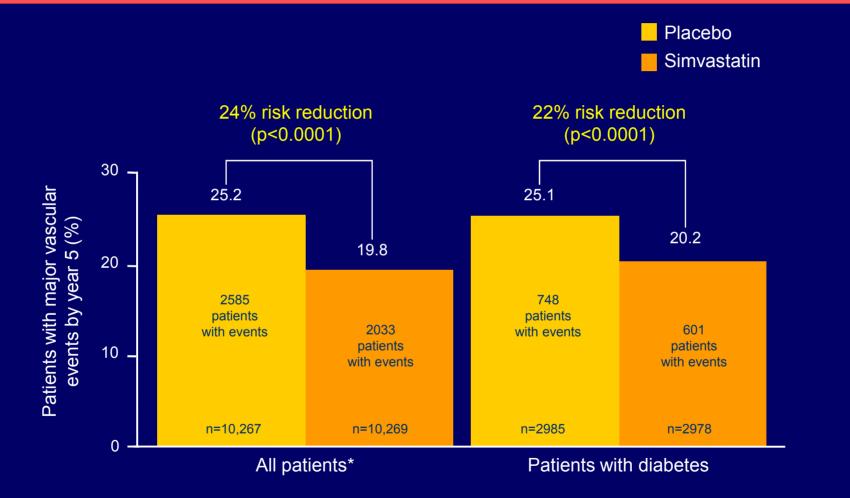
*Nonfatal MI or death from coronary disease

**Major coronary events, stroke of any type, and coronary or noncoronary revascularizations

Adapted from Heart Protection Study Collaborative Group *Eur Heart J* 1999;20:725-741; Heart Protection Study Collaborative Group *Lancet* 2002;360:7-22; Heart Protection Study Collaborative Group *Lancet* 2003;361:2005-2016.

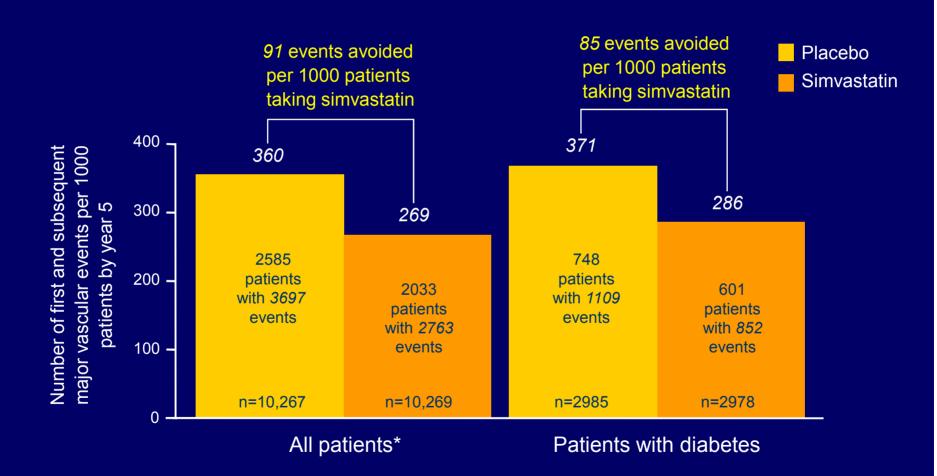
Impact of Simvastatin on LDL-C Nine Out of 10 Patients with Diabetes Achieved Goal (LDLc <115mg/dl) *

Results from the five-year Heart Protection Study (HPS) of almost 6000 patients with diabetes with or without CHD indicated that 92% of patients with diabetes, but without CHD, and 91% of patients with CHD who received simvastatin 40 mg achieved the European Guidelines LDL-C treatment goal of <3 mmol/L (115 mg/dl)***</p>


Adapted from Armitage J, Collins R Heart 2000;84:357-360.

^{*}By the four-month point in HPS

^{**}These populations differ from those reported in later HPS publications (3982 and 1981) because three patients were reclassified after the four-month point. The percentages of patients achieving LDL-C goal are not affected.


^{***}Based on random sampling of patients with diabetes

First Major Vascular Events All Patients vs. Patients with Diabetes

*Includes patients with CHD, occlusive disease of noncoronary arteries, diabetes, or treated hypertension Adapted from Heart Protection Study Collaborative Group *Lancet* 2002;360:7-22; Heart Protection Study Collaborative Group *Lancet* 2003;361:2005-2016.

First and Subsequent Major Vascular Events All Patients vs. Patients with Diabetes

*Includes patients with CHD, occlusive disease of noncoronary arteries, diabetes, or treated hypertension Adapted from Heart Protection Study Collaborative Group *Lancet* 2003;361:2005-2016.